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OPTIMAL TRANSFERS BETWEEN ELLIPTIC COPLANAR ORBITS (TIME OPEN)

SUMMARY

From the viewpoint of characteristic speed, the optimal transfers between
elliptic coplanar orbits are of 4 types: by one, two, or three finite impulses, or
else "through infinity" (theoretically utilizing intermediate orbits which are par-
abolle, or practically, very elongated ellipses). Of course, each impulse can be
arbitrarily subdivided since the transfer time is not limited. Thus, a rocket in-
capable of furnishing the impulses.can nevertheless approach as near as one wishes
to the optimum (in a sufficiently long time). The transfers by one or three im-
pulses are very rare. The latter only appear for large eccentricities: it is
necessary for the sum of the eccentricities of the initial and final orbits to
exceed 1.712. When the optimal transfer is not "through infinity," the search for
the optimal impulses (and therefore for the one or two intermediate ellipses) is
generally very difficult. It is only easy in the following cases (only the first
case is shown here): transfers between: coaxial orbits (perigees on the same
side); inverted coaxial orbits (perigees on opposite sides); equal orbits; quasi-
circular, neighboring orbits; quasi-circular, not neighboring orbits; orbits of
which one has an eccentricity near one.

The third part gives the method of determining the optimal number of impulses
(by one, two, or three impulses or else "through infinity") in the majority of
cases.

INTRODUCTION

The problem of orbital transfer and that of spatial rendezvous (to rejoin--in
position and speed--a real or fictitious moving point circulating in space) are
obviously problems essential to space exploration.

One of the severe constraints in these problems is the limited performance

of space propulsion systems, It is therefore very interesting to search for the
most economical way to effect a transfer or rendezvous. ’



The problem thus posed is very complex, even in the case of Keplerian orbits
removed from every perturbing influence, i.e., a Newtonian field of attraction where
there is only one center of mass and it is fixed in position and time; one is
scarcely able to resolve the following cases:

1. transfer or rendezvous on an orbit infinitely near to the orbit of depar-
ture when time is limited and fixed;

2. transfer or rendezvous on any orbit without limitation of duration.

It is the latter case which is studied here (also being restricted to the study
of coplanar orbits). The economy of propellant mass always corresponds to the econ-
omy of characteristic speed, whether speed of ejection is modulated or not (the op-
timization always leads to the use of the maximal speed of ejection). Therefore the
problem is always to find the transfer of minimal characteristic speed in each case.

It happens often that one obtains (some) transfers of prohibitive time, and
even of infinite duration. The study will give then a lower bound for fuel consump-
tion which one would be able to approach in a sufficiently long time.

Some similar problems have already been dealt with (see references), most often

with restrictive hypotheses (limited number of impulses, etc....). There are also
mimerous numerical studies.

1. FIRST PART

1.1 Definition of the Optimal Character of the Transfer

one.
There is onlyAcenter of attraction of a given mass.

At the time t, = O a moving point is on a given elliptic or parabolic Keplerian
orbit. One wishes that at the time t, = +® it would be on another prespecified
orbit, that the minimum characteristic speed be expended in the transfer (and there-
fore the minimum fuel consumption).

The problem of the rendezvous: +to rejoin a real or fictional moving point cir-
culating on the final orbit. With time open, this maneuver is no more expensive
than the simple transfer because one can always, in order to achieve the transfer,
wait for "the good moment" on an orbit neighboring the final orbit and of a slightly
different period.

Therefore we have only problems of simple transfers.
1.2 Notations

The direction of the perigee of the first orbit is taken for the direction of
reference, with positive rotation in the direction of motion.



The first orbit is entirely defined by a,--its semimajor axis and e,--its
eccentricity, the second is given by a,, €, and @, (Longitude of the perigee).

We will use the regular notations and reserve the non-subscripted letters for
the "actual" or "osculastory" orbit.

y = acceleration due to the action of the propellants.

t
Ve fo i¥yldt = characteristic speed.

~i

1l

o = semimajor axis.

e = eccentricity.

b=o0+1-e?

i

semiminor axis.

semi latus rectum.

i

p = all—e?)
¢ = ae = focal distance.

@ = longitude of the perigee.
v = true anomaly.

E = eccentric anomaly.

n = mean motion.

p = n2a® = gravitational constant.

r = radius vector.

V = speed vector,

A=rxV = angular momentum vector.

H=IHl = nab = length of the angtﬂar momentum vector.
3 =—é/-§ =—,ﬁ +;sz = energy.

P = g{l —~e) = distance to the perigee. 0O<sP<ps<h
A = a(l +e) = distance to the apogee. b<a <A
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Fig. 1. Orbit. - OA=0P =FB = a
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1 4+ e cosv

1.3 Action of the Engine Thrust

An acceleration ¥ caused by propulsive action will be decomposed into:

S = y sin ¢ = radial acceleration ¢ is oriented
(positive in the upward direction) in an opposite

T = y cos ¢ = horizontal acceleration sense from v
(positive in the forward direction) and @.

One obtains the classical formulas:

da 2a .

prfialiey [S e sin v + T(1 + e cos v)]

%% = —nl;?[s sinv+ T(cos v+ cos E)]

5 a

@ _ -—P—[-S cos v + T(sin v +  sin E)]
dt nac

One can deduce from this:

dH

a: 2b
—— = T' —E:-——— T 'sz
at at  na? ( »e)
LIy [Sesinv+T(l+ecosv)]
dt H
db L .
2= T2 + e(cos v - cos E + 8 e sin v
dt n[ [ ( )] ]

Fig., 2. Thrust.




Remark: The transfer between one parabola and another demands a negligible charac-
teristic speed: an infinitely small impulse at infinite distance is sufficient for
passing to a circular orbit, and another one for passing to the second parabola.
Therefore, the optimal transfer between two elliptic orbits never utilizes greater
than parabolic speeds.

2. SECOND PART

2.1 The Domain of Maneuverability

It is easy enough to demonstrate that the optimal transfer between two coplanar
ellipses is always entirely in the plane of the two ellipses; we will assume this
point.

An orbit is defined by a, e, and . The state of a rocket can now be defined
1
by a, e, @ and V, (= [ ydt) or by b, e, @, V.
0

One can change independent variables and thereby eliminate time, the maneuver-
ability being canonical and a function only of the parameters b, e, w, and V.; one
obtains then in order to study the actions of an infinitely small thrusty= dvV;:

db_
v
de
av,
d@
av-
ave
av,

i1

L [cos $[2 + e(cos v = cos E)] + e sin v sin 4>]
n

1l

—% [cos(v - ¢) + cos¢cos E]
na

bc [sin (v - ¢) + % sin E cos ¢]

The control parameters are v (attached to E) and ¢. One can in effect always
choose ¢, direction of the thrust,and v, point of the orbit where thrust is applied.
It is always possible to wait for the best position along the orbit (this is per-
missible when time is open).

. . .o . mna? de ned@ ndb
Let us suppose,»ln order to simplify: — -Cﬁc- = X, _ch = Y, ——ch = 7

The domain of maneuverasbility is described by:

2
X = cos(v - + cos pcos E = 12~ de
(v - ¢) ¢ i
Y:p-sin(v—¢)+sinEcos¢ - hcdw
& av,

db

Z =2 cos¢+ e cos (v-¢)—ecosEcos¢=n-&V—
c



Hence it depends only upon e because g— = /1 - e?

The changing of ¢ into ¢ + 7 changes X into -X, Y into -Y, Z into -Z; the
point 0 (X =0; Y=0; Z = 0) is therefore the center of symmetry of the domain.

Likewise the plane OXZ and the axis 0Y (v into ~-v and ¢ into-¢) are elements
of symmetry of the domain.

Fig. 3. Domain of maneuverability for e = 0.

IX| and |Z| maximum are worth +2 and are obtained for ¢ = O or m, and v=E = 0
or m. The domain of maneuverability then comprises the square +2, -2 in the plane
0XZ.

It is easy to verify that h> X%+ Y22 zz‘; the domain is therefore always at the
interior of the cylinder defined by X2+ Y?<L, |Zl< 2.

Consider e = O ( §= 1l; v = E) X =2 cosdcos v + sin¢sin v X2+ Yo
= i - gi s
Y =2 sinvcos ¢ .31nq§co v 14 §Z2
Z =2 cos¢ I

The domain of maneuverability for e = 0 is formed of a hyperboloid of one sheet
(Fig. 3) of axis 0Z limited to Z = £2. Completing the domain by the smallest con-
vex volume which contains it, one obtains for the total domain, the cylinder defined
above (X%+ Y?<h; |Zl<2); the only useful points of the domain are those situated
on the surface of this cylinder--that is, those for whichZ = *2, with either ¢ =0
or m, Any other value for ¢ is not optimal.

— g — - —

The domain of total maneuverability has a slightly different aspect as repre-
sented in Fig. k4.

It contains the square ABCD (+2; -2) in the plane 0XZ, and comprises 2 convex
zones (shaded) corresponding to the useful values of ¢(which are about from

e gin v e gin v e sinv e sinv .
'—""3""’ to ——— and from = + —3 to 7+ - ). These zones are pinched



at A, B, C and D. The domain comprises, in addition, three developable surfaces:
one lateral with such generatrices as IM (~ //0Z) , the two others above and below
with such generatrices JK (~ / /OX). The generatrices correspond to some possibili-
ties of commutation (switching), that is, to discontinuities in the position of the
thrust application point.

Fig. 4. Domain of maneuverability for e ~ 0.
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One easily deduces from this the domain of total maneuverability (Fig. 5).

The total domain always contains the square ABCD., It is limited by 4 triangles
such as AEF, and 4 cones with vertices A and C being supported on the ellipse:

X=-4=cosE~1; Y=3sinkE
and its counterpart which is symmetric with respect to O.
F(-1, +1, +1) corresponds to E = 7/2 and¢= 0.
The useful points of the domain are those which are on the surface, that is:

-1l. A and C for which v = O and ¢ = 0 or m;
2. half of the points of the 2 ellipses, for which cos E £ O and ¢ = O or 7.



One sees then that for O <|E|<= /2 there exist 2 purely ballistic arcs without
any useful direction.

The generatrices like AJ or AL represent possibilities of commutation, The
triangles like AEF are possibilities of double commutation, that is to say, of
infinitesimal optimal transfers by 3 impulses,

Fig. 5. Domain of maneuverability for e ~ 1.
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If one studies the same domain with more precision one obtains a slightly
different image presented in projection on the plane 0XZ in Fig. 6.

There are L4 convex zones (shaded) corresponding to useful values of ¢. These
are pinched respectively at A, B, C and D. There are 4 triangles like RFG, and 6
developable surfaces of which JK, IM, PN are generatrices. (These always correspond
to possibilities of commutation.) :

Fig. 6. Domain of maneuverability for e ~ 1.




General Case

— . — o——

The domain of maneuverability always has the symmetries (0, 0Y, OXZ). It always
lies within the cylinder X®+ Y?< )k, |zl <2, of which it contains the square ABCD in
the plane 0XZ. It changes form in a continuous manner from e = 0 until e = 1 and

there is a limiting value, eg, close to 0.925, for which appear triangles which
characterize the domain for e ~ 1.

e < eg: there are two opposed angles by the vertex of useful ¢ values (that
is, which can be optimal for a well chosen transfer) for each value of v.

e > e, certain positions of orbit (in the lower half) have no useful angle.
They correspond to necessarily ballistic arcs. For these eccentricities there exist
infinitesimal optimal transfers by three impulses,

One precise numerical study has led to 0.9248 < e, < 0.9252. For eccentricity
eo the domain of maneuverability contains four infinitely flat symmetric triangles,
having two peculiar vertices corresponding to v = t 122.3 1% (E = + 39.44°) and
¢ = 26.04° (+0 or 180°). These points are utilized in the course of describing
"Lawden's spiral" (1) arc for which

6 sv1 -58% (1L -282)(3 - L4s?)

e sin v = ( 2)2 and
3 =58
2 242
e son ) ST g

The third vertex of these infinitely flat triangles corresponds to ¢, = + 170.330
(+0°or 180°), E, = 96.260, with the relations: sin¢gsiné,>0; cos$cose, < O;
sin E sin E, < O and sin E tan¢ > O.

2.2 The Useful Angle and the Commutations

The determination of the useful angles is very important, not only because they
delimit the utilizable directions of thrust, but also because the extreme directions
on the sides of the useful angle correspond to the commutations, that is to say, to
the discontinuities in the position of the thrust application point (thrust-off and
then on again at another point of the orbit).

Let us rewrite the equations of the domain of maneuverability:

X

cos (v - ¢) + cospcos E

Y = 2 sin(v - ¢) + cosésin E
a

Z

2 cos¢ + e cos(v - ¢) - e cospcos E

At a point XYZ of the domain of maneuverability the tangent plane is determined
by the two vectors:



& Y oz
o0¢’ 0¢’ 0¢
L (% ot oz
an ov’ ov’ ov

L+ e
1l -~-e

(E being bound to v by tan g = tan %).

If the point XY7Z corresponds to a limiting direction of the useful angle, it
is such that there is a second point X, Y, Z where the tangent plane to the domain
is the same (corresponding point of commutation).

It is sufficient then, theoretically, to solve for v and e given¢, v,, and ¢,
in the three following equations:

XYz X, Y, 7, E%T(X,, X, Z,)
5% & 1, 2)| = é% (X, ¥, 2) 5% (X, Y, Z) = 0; and
2yl |Twyaf |27y
—a—?: (X, ¥y, Z,)
a%(,X> Y, %) -0
5% (%, Y, 2)

One can thus obtain the useful local angle and the corresponding commutations
for every value of e and v,

We will go on to give here some limited developments in the vicinity of e = 0
and of e =1,

Because of the symmetries, the useful angle is formed from 2 angles opposed to

the vertex. These angles are always within the acute angles formed by the tangent
and the local horizontal. The useful angle will be delimited by ¢; and ¢¢ (Fig. T).

10



Fig. T. Useful Angle
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1. Development in the vicinity of e = 1.

Let us put: B = /1 - e2 = €
a

A. In the vicinity of the perigee (v ~ 0), to order €%:

v, . v3 _ 3w v w3 ve?,
¢|~)++512 32 ) ¢5*')+ 512 32J

and vl <lhle (beyond Ivl = he:

Féil > (gl , there is no longer a useful
angle),

B. In the higher half of the orbit (v ~ 7 ) to order €°:

¢, = esinE-max[(—z-(-l—:_l—c—as—E))., (-1 + _/3.,.2,065_25)]

o €sinkE _ sinv
Let us put & = = 0FH = T3
And ¢'; = € sinE ['l +, /3+QQ§‘E]" bs = %sinv = 3¢

3 2

For cos E< - 2€, l¢1 < 1¢;l; ¢ 1is not involved. The useful angle

goes from ¢; to ¢g.

For - 13;52 < cos E < + %62! I¢il > 1¢;l; ¢ is not involved. The useful
angle goes from ¢; to ¢,.

For cos E > %3- €2 I¢il > lggl, there is no longer a useful angle.

Thus, from v = ke to E = T - Fefand fram v = -he to E= -T + 2e are

extended to purely ballistic arcs without any useful direction. These arcs occur
between e = 1 and e = e, (~ 0.925).

11



2, Development in the neighborhood of e = O or of sin v = O:

e sinv{2—e cosv) 2¢e%sin®v(6 — e?cos?v)? 13 5.5
ton ¢ = - = - e’sin’v + ®sin®
és 4+ecosv-e?cos?y (3+ecosvid+ecosv — e?cos?v)* 1536 v +order (¢"sin"v)
esinv I8e3sin’y 2 5.5 6. .5
ton ¢; = + + =-e'sin'v + order
on ¢ 3+ecosv (3+ecosv)s 8I° order (¢sin"v)

(true for ¢; but not for ¢;')

- - E
Ceome fon & < &SNV _esin

For the sake of comparison: <2 T+ e cosy Wieri

¢s maximum ~ 26,2° The useful angle is always less than 12.5°
(¢ — ¢;) maximum ~ 12° and less than one fifth of & (angle between
( i} maximum < 0.2 the tangent and the local horizontal).

esinv

One always has: | m‘g—v| < Man il

I esiny (2 — )I
ltandsl < |4 + ecosv - e?cos®v

Now here are the corresponding commutations: v, E, ¢, ¢s, ¢i, ¢'i are relative
to the point of arrival on the intermediary ellipse of the commutation. v,, E,,
b1, bsi, Piv, ¢'u are relative to the point of departure of the intermediary ellipse
(corresponding point of comnmtation). Of course all these elements are related to
the intermediary ellipse.

1. Commutations relative to ¢s.
(They correspond to the generatrices JK in the sketches of the domain of maneuv-

bility.
srablity. ) v v, (3 +e){a+e— e?)
tan - - tan =

2 27 (3-elda-e -e2)

+{order e3sin?v)
The calculation of v, by this formula gives an error of the order of e¥sin®v,

Here is a more precise expression:

v v (3 +el(a +e—ez)[ -
- 1 = v v ) ‘ _
fang tan %5 = 3=e)@ —e - e7) || +acos? (—Z—L)] + (order e’ sin?v sin? L= > Yi )

obtained in utilizing Lawden's results on an arc with intermediate thrust (for this
arc: V =Y, (= vo) , a is therefore determined by:

- e | — cos v, v
sre arecel (g . locon el

e | + cos vo

12



V, being determined by:

. _ 65+/1-52(1-25%)(3-4s2)
esinv = (3 - 5s2)2 '

38’ (-7 + 218~ 168%)
(3 — 552)2

e cos v, =

s (which is used in place of sin ¢) serves as an auxiliary parameter.

One obtains:

= T . T, 30€ s
Vo= 5 * 3 + =35t {order %)

a = [— é%‘e5+ (order es)]

The calculation of v, by this last expression gives an error of the order of
e® sin*v sin® ((v- v,)/2) '

In particular: for e~O0: v, ~ T -V
for e ~1: sin v ~ O (because of the two ballistic arcs) and

ta.ny-'tan;f-'ov .

¢ and ¢, are given by:

e _{Gif cosv > cos v
PP = -y = {17 f cos v < cos v,
2. Commutations relative to ¢;:

(They correspond to the generatrices IM.)

v Vi (3 +e)?
tan 5 +tanx = — =T 4 3cin2
2 2 (3-e) (order e’sin®v)
which gives an error of the order of e®*sin®v in the calculation of v,. Here is a

more precise expression:

; > ___(_3_:_e_)2 [l + B cos® (v ';V' )] + [order e®sin’v sinz( v+v|)]

cot —- =
otz otz = (3+e)2 2
—_ 2
B Ybeing defined by: (I + @) (3-e) _ ltx
(3+e)2 - x

with x = root of e%® + 3ex? + (3 +e¥)x +2e = O

_ _16e® _ 40e® 1288
(8= 27 TR 7 )

13



The calculation of v, by this last expression gives an error of the order of
e’ sindv sinz(z_%_zl_) .

In particular: fore=0: v, =T+ v
for e ~1: tan (v/2): tan (v, /2) ~ -k

¢ and ¢ are given by ¢=¢;; ¢= ¢; + T.
3. Commutations relative to ¢;(therefore for e > e, ~ 0.925).
(These commutations correspond to the generatrices PN in the last sketch of the
domain of maneuverability, for which e ~1.)
Let us‘put € = /1 - e? and perform the development in the vicinity of € = 0.

The parameter z(lzl<<) is useful in describing the solutions (with an error

of the order of €®for ¢;and ¢; and €*for E and E,):

e — TN |
lzl € =1 ¢i=2z t e, ¢y=2Fe, ($¢,50

E —~4€z + sgn 4;i<127'._ € - )
’)

E,= —4€z * sgn ¢,|(—— — €t— 2

¢ =, b=+ T

If one terms an accelerating thrust a thrust directed into the part before the
useful angle (see Fig. 7) , and braking a thrust directed into the back part, one
sees that: the sense of the commutations is such that, one commutation ¢, or @',
follows an accelerating thrust and precedes a brake; one commutation ¢, follows a
low’ accelerating thrust and precedes a high acceleration, or else follows a high
braking thrust and precedes a lower one. This determines the sense of the commu-
tations, which we will demonstrate further.

For the commutations ¢;(or ¢;if e > €p ~ 0.925) the case v,= -v 1g simple.
One obtains there:

cos v = cos v, = the root of the following equation:
e?x®+ 3ex’+(3+ ef)x + 2e = O
from which cos E = cos E, = the root of the following equation:
e2y® + yie® - 3e) + y(3-2¢7) = ell-&)
% refers to a low position on the orbit

14



. inv cos E
= ¢;lor ¢;) = arc tan —=30V_ _ Los &
¢ = @ilor ¢ " 3+ 2ecosv arc tan siny

¢ =, + T (or gyt + ) = m—¢
This case is utilized in the transfer between equal ellipses.

2.3 Impulses and Continuous Thrusts

At this point, we can see that an opbtimal transfer between coplanar orbits can
be presented in the following manner: it is composed of a series of contimuous
thrusts or of "retrograde thrusts" (where the point of optimal application of the
thrust is continuously displaced in a direction opposite to the primary motion, and
for which a physical interpretation consists of an infinity of on and off switches
of the thruster with coasts of nearly an orbital revolution between each thrust), or
even of impulses (the optimal point of application is fixed). These continuous or
"retrograde" thrusts, or else these impulses, are:

"1l. always applied within the useful local angle.

2. separated from one another by the commutations that we discovered in the
preceding chapter, and which correspond to the discontinuities in position from the
optimal application point of the thrust.

In fact, there are never (optimal) continuous thrusts or optimal retrograde
thrusts. One can see this in the following manner.

Let us see under what conditions a determined impulse is "locally optimal,"
i.e., cannot be replaced by 2 or more impulses at infinitely neighboring points
(or in the limit by a continuous or "retrograde" thrust) Fig. 8.

Fig. 8. Study of local optimality. Fig. 9. Local opbtimality.
R
Q
HORIZONTAL M ¢ N
T
Feé

The calculation is simple but long and ought to be carried out to the second
order.

The result is (Fig. 9):
1. The character of local optimality depends only on the point of application
and on the direction of the impulse, and not on its size.

15



2. If one poses: ﬁé = g = initial speed of M.
QR = AV = considered impulse.
N at the intersection of QR and of the local horizontal.

If IMNI + /1 - 3 sin2¢ > local circular speed =\/_E:

the impulse is locally optimal.

If IMNl ¢« /1 - 3 sin?¢ < local circular speed =ﬂ:
the impulse is not locally optimal.
The character of local optimality does not depend on the size of the E/’ 's

and, the globally optimal thrusts being also locally optimal, it is not possible
to have any continuous or "retrograde" thrust for which:

IMNI « ~/ 1 - 3 sin?¢ > local circular speed

because a small arc of such thrust would be advantageously replaced by the corres-
ponding impulse,

On the other hand, this demonstration would not be valid if on an arc of
continuous or retrograde thrust one had constantly IMNI+ /1 - 3 sin?¢ = local
circular speed, with the additional condition of course that the direction of
thrust is within the useful angle. (The direction in question could at most be
a limiting direction among those globally optimal, i.e., one will have ¢ =¢; or
$s (+0 or m).) One finds effectively that IMNI* /1 - 3 sin?¢ = local circular
speed for ¢ = ¢, when the corresponding commutation ¢sis infinitely short, i.e.,

when: 3
v=v‘=+<7_T+ZE+_39.J:E_+(ordere5))
- \2 12 10.368

This is quite logical because an infinitely short commutation is "local" and
thrusts in its immediate vieinity are not locally optimal.

Thus appears an arc of contimuous thrust (or, by symmetry, retrograde thrust)
which is the limiting case for a great number of short commtations (v ~ V|)°
This arc is that which is described by Lawden (l). Nevertheless it is not optimal
because the optimal number of commitations remains limited. But it is far from
being large: 1if, in departing from an ellipse of eccentricity e, one follows such
an arc with central angle a, the relative loss (for small e) in relation to the
optimum is only:

e? 3»(1!2 2 Q a
L — 3 = 2
33 ( - + 2a IZ) + (order €%, f Ifon 2‘ 2 3
2
hich i ea* 2 M- ¢
{ | — - O —_
which Is 840 for small a, e € fora=1

16



. Qa a .
if \fon 3\ < 2 the error is
2 @
3e? 4 sin’ 4sin 3 2 a
g \! ™ Tar I 5"‘ — sin ea, {order €®)

2 .
which is %(2n21r2+6n7r+3) fora= 2nm (n integer)

2.4 The Senses of the Commutations

An optimal coplanar transfer allows only one impulse (finite or infinitely
small) between 2 successive commutations. Since the commutations occur when the
direction of thrust is coincident with that from one of the extremes of the useful
angle, one can determine the sense of the commutations by studying the sense of
variation of these limiting angles in the course of an "impulsive" thrust.

¢; , ¢ and ¢ only depend on e and v;

de s known, & __ &8 because (v + @) is fixed in the course of an
c ¥y
impulse
From which:

l ¢ ~ ¢ f(or ) + O or 7

d tan ¢, 2be sinv cos ¢
A) F ~ or sinv ~ O: = + (order e3sin3v)
) Fore ~ 0 or s d Vv, na®(3+ecos vI*(l + e cosv)
B) For e ~|: dtong; _ sinEcosg I ='sinEcos¢ €y~
av, 8o conif v~ O, oy
dton ¢ _ cos¢sinE - 3
dVe - na cos E
3+ -
let L g —_na__, dfangt . 3
2 cos ¢ sink d Ve )
C) For all coses:
de; (or %) )
sgn —WC—-— = Sgn Cos ¢ sinv ;

for ¢ ~ ¢; lor ¢;) + O or 7

2. ¢ ~ s OF g 4T

A) For e ~0 or sinv~0O:

F
dtan¢s _ _ becos¢ [ 6e’sinvcosv 7 esin’v o3 ]
dVe na? (4 + ecosv — e?cos?v)? (I + e cosv) ¥ 32 + order {e%sinv)
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B) For e~1:

dtan ¢ 3 sinEcos ¢ . 3 sinEcos¢ .
v, = — -é-—"—n'a—.....lfv~0,+? na v df v~

C) For all cases by setting v, = the correspondant of.v in the commutation P

des

av, = sgn [cos $esinv-(cos v, — cos v)];

sgn

for ¢ =¢g or ¢, + 7

From the two preceding framed relations and from:

0 < ¢;lor ¢ < $s < 'TGL for sinv 20

with ¢ 0 + € ; + .
02 ¢ lor ) 2 ¢ re¢+w [¢ lor ), 4,5]

one obtains the sense of the commutations:

v

—-% for sinv < 0

1. Commutations ¢;(or ¢;'):
= ¢ lor )5 ¢ = gylorgy) + 7

The commutations ¢;(or ¢;') follow an accelerating thrust and precede a brake
(situated at a point of the orbit on the other side of the major axis).

2. Commutations ¢g:

O _ [Oif cosv >cos v
= %= =% = \yrif cosv < cos v

The commutations ¢ involve one accelerating thrust followed by another at a
higher point in the orbit, or else a brake by another at a lower point (on the same
side of the major axis).

It is then easy to construct examples of optimal transfer in departing from an
intermediate ellipse, as well as sense of the commutation above. The opposite prob-
lem, to find an intermediary ellipse or ellipses to depart from the given orbits,
can only be resolved implicitly.

2.5 The Number of Commutations

A "complete" optimal coplanar transfer contains therefore: a series of
accelerating thrusts at points higher and higher which, according to the sign of
@, (for -7 < w, £ +7) will be accomplished in an ascending phase (for @, >
0) or descending (for @,<0); then, after a commutation ¢;, (or ¢), a series of
brakes at lower and lower points in the other phase.

In fact, there are only the following cases:
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A, Tinite transfers by one, two or three impulses with O, 1, or 2 commutations.
In the last case, one cammutation is ¢ and one is ¢;(or ¢)).

B. Transfers "through infinity," which are simple although time consuming.
A tangential impulse at perigee effects transfer to a parabola. A return parabols
is entered by some negligible impulses at a great distance. Passage onto the final
ellipse is by a brake which is tangential to the perigee. This transfer mode is
always optimal if the ratio of the distances to the perigees is greater than 11.938,

or, between non-coplanar orbits, if the angle of the orbital planes is greater than
60.18500°,

This mode of transfer always has a characteristic speed between 41.42-50% of
the sum of the two apogee speeds:

= f2H _ SHA 2p (A,
ch ‘\/: °|pl +’\/P2 —r\/ozpz

Obviously, this transfer is not physically realizable. But one can come as
close as one wishes, in a sufficiently long time, by using two very elongated ellip-
ses and, at great distance, a large circle or a large intermediate ellipse.

In order to demonstrate propositions A and B above, it is sufficient to prove
that a transfer using the series of commutations ¢, ¢g; or ¢, ¢, ¢s; or ¢, i,
¢ cannot be optimal.

It is easy enough to demonstrate that the series ¢s, ¢i (or ), ¢s is
not optimal. We already know that the series ¢s, ¢; (or ¢') and the series ¢; (or
$'), ¢s are realizable only if the intermediate ellipse of the commuitation ¢ has an
eccentricity greater than (/3 - 1), and that they are only optimal if this same
eccentricity is at least of the order of 0.9. Finally, for eccentricities close
to 1, the series ¢, ¢i (or ¢i), ¢, has a characteristic speed at least double that
of the transfer "through infinity" between the intermediate ellipses of the
commutations ¢s.

The demonstrations of the non-optimality of the series ¢, s with 2 commuta-
tions of type @s (therefore of 3 accelerating thrusts or of 3 successive brakings)
is much more delicate in the general case, although it is evident for e ~ 1 because
of the discontinuity due to the ballistic arcs. Tt is made without too much diffi-
culty in cases where e (1 - e) sin v is O or close to O at one time or another in
the course of the transfer (v being the true anomaly of the points where one

thrusts).
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3. THIRD PART: GENERALITTES--DETERMINATION OF THE OPTIMAL MODE OF TRANSFER

Since the domain of maneuverability is independant of @ and has the symmetry
(d®, -d@), the result is:

1. The variation of @ is monotonoic in the course of a transfer.

2. The cost of a transfer is an increasing function of @, (for -w £ @, <
+ 7). In particular, if the optimal transfer is "through infinity" for @,= 0, it
is the same for all a,.

3. If @,= O (aligned coaxial orbits): @, =0. One always uses the points of
the domain of maneuverability for which dw = 0, i.e., the points ABC or D (tangential
thrusts at the perigee or at the apogee). The series of the impulses was shown in
the preceding section. There are then, at most, 3 of them (Fig. 10):

I. A tangential, accelerating impulse at the perigee of the first orbit.
II. A tangential impulse at the apogee A of the intermediate ellipses.
IIT. A tangential, braking impulse at the perigee of the second orbit.

Fig. 10. Transfers between direct coaxial orbits (or aligned co-axial orbits).

A
-+
N\

/,/
7N
/

\
| g :
|

\ @/
\ /
N\

3-IMPULSE TRANSFER HOHMANN TRANSFER TRANSFER THROUGH INFINITY
{OR BI—PARABOLIC)

It is easy to compare the remaining possibilities. One sees then that for the
optimum, one of the three impulses is infinitely small, and that the transfer is
either: 1) "Hohmann's"--by a bi-tangential ellipse, tangent at the higher apogee
and at the perigee of the other orbit, or 2) "through infinity" with quasi-parabolas
and an infinitely small impulse at a large distance. The occurrence of these two
possibilities is illustrated in Fig. 1l.
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Fig. 11. Transfers between aligned, coaxial, coplanar orbits (@, = 0). One sets
A = max(A,, A,), P =max(P,, P,), B, =min(P, , P,). The optimal transfer

\p is always: "Hohmsnn's" if P/ B, £ 9, "through infinity" if P/ P, > 11.938.
A Min(A,, A,) never affects the choice.
1.0
I
HOHMANN I
0.8 1

TRANSFERS /

06 4

0.4 /
/ TRANSFERS 'THROUGH
0.2 INFINITY" ]
|
I
P
0 11.938§ 0

9 10 H 12

Now here are some more general remarks:

A. The optimal transfer is by one impulse if and only if the following con-
ditions are met:
1. The two given orbits are tangent or intersecting.
2. At the lowest intersection point (where the optimal impulse is
accomplished) the required impulsive AV is:

I. Within the useful local angle 6f each of the two orbits.
IT. ®Such that:

= /2R [EA J 2K KA,
av: s ch P a,P, * P, a,P,

These transfers are rare because of condition 2.I. and because of the smallness
of the useful angles. This condition requires that if the orbits are tangent they
ought to be coaxial (@&, = O or 7), which includes the case where one is a circle.

3. The optimal transfers by 3 impulses are also very rare. They are
found omly if the following (not sufficient) conditions are met:

L (m*/?: + fi&)-mox (VPP < A= e 0.2873

a a, 16

(which carries with it e, + e, > 1.712)
2. 0° < |w,l < 22°

9 P
3. 25 <7p, <

25
9
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The conditions 1 and 2 are very restrictive.

For these transfers, the first impulse is an accelerating thrust, the last a
brake.

If the given orbits are tangent and coaxial (aligned or opposing, @, = O or ),
the optimal transfer is either by one impulse at the point of contact or "through
infinity." The occurrence of these two possibilities can be seen in Fig. 11 or
12 if w,= 0 and Fig. 12 if @w,= 7,

In the other cases, the Figures 12 and 13 often permit the determination of
the optimal mode of transfer (by 1, 2, or 3 impulses or else "through infinity").

We always suppose here that F < P,, which one can always do, since the transfers
are reversible,

Fig. 12 describes the case where the orbits do not intersect; e, is an
abscissa, P, /P, an ordinate. ‘

Fig. 12. Transfers between non-intersecting coplanar orbits (an exception is made
in the case where they are tangent and coaxial). P, £ A, < A,, P, < B, <£4A,. If
the transfer is "finite” the first two impulses are accelerating thrusts, the third
is a brake. If A, + P, (= 2a,) £ 6.32 P,, the optimal transfer cannot be by three

impulses. AP
P2
Ko] l |
2 OR 3 IMPULSES —Le
0.9+ -
08 2 - IMPULSE » I
TRANSFERS 2 OR 3 IMPULSES /|
OR “THROUGH ,
o7 INFINITY" ‘
|
06 / }
\
05| |
. \
o4 4 4
Cst LIMIT FOR @,7 ‘TRANSFERS BY 2
o3l T AND A, = P, IMPULSES OR
“THROUGH INFINITY"
0.2 / |
Ca: LIMIT FOR @Wp=0 OR A, = P
0.1k I
TRANSFERS "THROUGH INFINITY" e,
! L | 1 ] ] ] ] -

0 or 02 03 04 O0O5 06 07 08 09 1.0
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The curve C, therein is a transformation of the curve in Fig. 11.

The equation of the curve C, is (where P, /P, = y):

A ()~ 78)
I P

It passes by the point: e, = 2 Y= =3
2

The dotted curve (upper right), showing the limit of the domain of transfers
"by 3 impulses," is traced "by judgment" to pass through the points e, = 1, P /P, =

0.36 and e, ~0.935 or 0.940; P, /P, =1,

In doubtful cases the following sufficient condition for "passage through
infinity" (valuable here but not always) sometines permits the determination:

(2Dl o (58, 15

For transfers between non-intersecting orbits, the cost, or characteristic
speed, is not very sensitive to the angle o,:

If the point e,, P, /P2 (Fig. 12) is underneath C, the cost of the transfer is:

m KA L 2u KA _
= /JLE - whatever @, is.
Ve »\/—P,— A/ @B TV TP, "V a, P, 2

If the point ep, P, /J'?2 is above C, the cost of the transfer is that of the

. Hohmann transfer for w,=0:
/#-Pe KA (Ae-P)/2p

Ve = A/ o8, "V ap, *
272 1 A,P(A,+ P)

For @, # O, it is such that:
Vv

IA

3(A, - P,)z)

<
CH VC - VCH(I.+ 32A,P

Fig, 13 applies in the case where the given orbits intersect; e, is the ab-

scissa, and e, the ordinate.
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Fig. 13. Transfers between intersecting coplansr orbits P, £ P, < A, § 4,.

/
Test: Z,v/Az + Z,v/A, — VA, + A, §0

Z(e) = YT e T ev/2
Vi—e
If l@,1 2 22°the optimal transfer cannot be “by 3 impulses."
€

1o £ < ~
TEST{NEGATIVE IF A <A, e ,/,

OR CALCULATE IF A>A, —¢

0.9 | I

‘ \

\

E
0.8 A NEGATIVE TEST <

N
\\ \
0.7+ \ Y

\ TEST{POSITIVE IF A 24,

0.6
OR CALCULATE IF Aj<Aj,
C
05
c.4 P
031
POSITIVE TEST -
0.2 {A,ZAzt TRANSFERS BY 2 IMPULSES
’ A <A,: TRANSFERS BY I OR 2 IMPULSES
o

! 1 | I P ] D
0 0.1 0.2 03 04 05 06 0.7 o8 09 1.0

This figure helps in applying the test:

2,/ Ay + 2,/A = JA+A, >0

) VI +e—eJ2
with z(e) =
Ji=e

which indicates particularly in the case @,= w:
Negative test: optimal transfer "through infinity." _
Positive test: optimal transfer "by 2 impulses' where the transfer

ellipse is bi-tangential at the apogees.

One distinguishes 2 cases:
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1. B < B £ A< A (then e 2 e,). The optimal transfer can be one of three
types (in departing from the orbit A, P, ):

I. By 2 impulses (one accelerating thrust, then a brake).
II. By 3 impulses (an accelerating thrust, then 2 brakes).
III. "Through infinity."

If the test is positive (or zero), the optimal transfer is by 2 impulses.

If the test is negative, the conditions sufficient for "passage through infin-

. " 3 . haad
ity" should be applied: 8 (/2 = 1) (1= cos @) 2 '_e__EL
2

9

or else P, P,, and A, satisfying the condition of Fig. 11, can lead to the con-
clusion of optimality of the transfer "through infinity."

Otherwise, the optimal transfer is either by 2 impulses or "through infinity;"
it can even be by 3 impulses iflw@,l < 22° and if the point (e,, e, ) is above the
mixed dashed line in the upper right of Fig. 13.

2. P, < P, <A, < A,. This case is the most complicated. Any of the following
types can be optimal (in departing from the orbit P,, A, ):

I. With one impulse (accelerating thrust).

II. With 2 accelerating impulses,
IITI. With 2 impulses (one accelerating thrust, then a brake).
IV. With three impulses.

V. "Through infinity."

If the test is positive or zero, the optimal transfer is by one or two impulses.

If the test is negative, two conditions sufficient for "passage through infin-

ity" : - . |1 —e, 1-e

T are (v2 = 1)(i = cos @,) me( ez', e,z)

or else P, P,, and A, satisfying the condition of Fig. 11. The optimality of the
transfer "through infinity" can thus be determined.

As before, otherwise the optimal transfer is either "by one or two impulses"
or "through infinity;" it can be "by 3 impulses” if l@,l < 22° and if the point
(ez, e, ) is to the right of the dotted line in the upper right of Fig. 13.

Contrary to the case of non-ihtersecting orbits, the transfers between inter-

secting orbits have a characteristic speed which is very sensitive to the angle
w,, as one can judge from the following example:

25



Example: u =1, P, =1, P, =2, A, =3, A, = 4,
w, varies from 0° to 180°.
w, < 60°-~the given orbits are interior.
@, = 60°--the given orbits are tangent.
@, > 60°--the given orbits intersect.

One obtains the following table:

Wy 0° 60.389 60.62° 1800
I} I 3 i
Optimal mode ' Two accel- F One accel~- i One accelerating '
of transfer X erating : erating ) impulse, then a |
! impul ses ! impulse i braking impulse [
Characteristic| ! ' i ;
speed of 0.1322 0.1519 0.1522 0.2636
transfer

Remark: The curves traced on Fig. 13 have the following equations:

Curve BC: 2/ + 2, =1 } 2(e) = JI+e-eJ2
Curve CE: 1z, + 2z, =2 JI - e

V1 - ee, + eVl + e, + el + g

Curve CD:  v2(1 + e, )(1 + e,)

]

These three curves are tangent (slope = -1) at C (e, = e, = 0.53533).

Curve DE: This is a transformation of the curve C,(Fig. 12) with:

1-e _ 2
1+ e, P,
J2 + 1
The curves DE and CD are tangent at D (slope = — s )
The curve DE passes through the point €, = e, = %.

The limiting curves of the regions of transfer "by 3 impulses" (upper right)
are traced "by judgment." The one in mixed, dashed lines passes through e, = e,
= € ~0.925, and through e, = 1, e, = 0.7127. The one in dotted lines passes through

e, = e, 81 (slope = 0.36) and through e, = 1, ¢, = 0.T127T.

4. FOURTH PART. THE PRACTICAL POINT OF VIEW

In practice rockets are incapable of realizing theoretical impulses, and also
the transfers ought to be effected in a finite time. It is then necessary to adopt
a solution in the neighborhood of the optimum. One decomposes each impulse into a
limited number of small thrusts which one effects using the maximal thrust of the
rocket, on arcs of central angle Aa, situated in the vicinity of the optimal the-
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oretical impulse point (and obviously at intervals of a revolution to one another).
The loss relative to the optimum is then less than:

EiE-Aaz (where p is the semi-latus rectum).

On the other hand, it sometimes occurs that the theoretical optimal transfer
is a "passage through infinity," which is therefore not physically realizable. One
can approach it by utilizing very elongated ellipses which are eventually joined
at great distance by a large circle or a large ellipse. If T is the desired transfer
time, the loss relative to the optimum is of order T?*if the orbits are coaxial and
aligned (because the elongated ellipses are then directly joinable), and of order

T'if the given orbits are not coaxial and aligned.

Finally, here i1s an interesting result in the case where the desired transfer
time T is not very long (let us choose a few orbital revolutions).

Let us pose k = EﬁﬁiﬁL;;éil (k 2 1)

To begin with, for unlimited time T:
Ifk < 21: +the optimal transfer is never by 3 impulses.
If k < 3.3041: +the optimal transfer is by one or two impulses (which
one can see with the help of Fig. 12 and the test of Fig. 13).
Ifk < 8.792 and if the given orbits are interior, the optimal transfer
is by 2 impulses (which one can see in Fig. 12).

Therefore, in particular for 3.3041 < k <15.582 the optimal transfer can be
by one or two impulses or else "through infinity."

_ Let us suppose that we have the rather frequent last case, 3.3041 < k¥ < 15.582,

and that the optimal transfer is "through infinity." There is, among the solutions
with one or 2 impulses, an optimal transfer which we will call the "close optimal
transfer" and which has, for this case, a characteristic speed, which is greater
than that for the transfer "through infinity."

‘ | k- | i -1
Then let j be such that: + = +
Vek  Vkk+1) V2] i+

with 3,3041 < k < 15.582 < j

(5 decreases from + ® to 15.582 whenk increases from 3.3041 to 15.582.) The
announced result is: the "close optimal transfer" is better (from the point of

view of characteristic speed) than every transfer which does not involve any impulse
or thrust (finite or infinitely small) beyond the distance j-min(P,, P,): Therefore
if j is sufficiently high, it is evident that the'close optimal transfer" is optimal
for T of the order of several orbital revolutions.
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Here are several values of j for values of k:

k J
3.3041 (= root of 8x* - 33k? + 22k = 1) +00
3.5 A (%10
5 f ettt eeeetateetenaareeeeanaeaeae. 160 |BPOUE
7 @8 806 5068 FOOS LS PIEENIELION B OIS BGCL SO SESN 53
15582  teieteennienrencnnrennccenscnencensesss 15,582 = root of:

3 =158 +95 + L.

The "close optimal" transfer is the Hohmann transfer if the given orbits are
aligned and coaxial (@, = 0). It is a transfer by a bi-tangential ellipse at the
two apogees or at the two perigees if the given orbits are opposing and coaxisl
(@, = 180°). 1In every case it is locally optimal and fulfills the conditions on

the useful angle, of commutation, and of sense of direction of the commutations
defined in Part 2.

These results cannot be extended to the case of transfers between non-coplanar
orbits.

Remark: If the two given coplanar orbits are non-intersecting, the relation

(only valusble if V,, <V, ): 3k - 12
© Vo S Ve S vou (1 + B0 )

is always valuable if one takes Vi = characteristic speed of the close optimal
transfer (Vy designating the characteristic speed of the corresponding Hohmann
transfer obtained by taking @,= 0). This relation permits the attainment of a
value approaching the necessary characteristic speed. ’

CONCILUSION

The optimal transfers, from the point of view of characteristic speed,
between coplanar elliptic orbits (time open) are generally realizable either by
2 impulse transfers, with an intermediate ellipse if the given orbits are slightly
different, or by transfers (through infinity" if the given orbits are very differ-
ent. These transfers are realizable in practice, with as small a loss as one
" wishes, by interposing very elongated ellipses joined at a great distance by a
large circle or a large ellipse. There is nevertheless a small proportion of
optimal transfer cases with one impulse or with 3 impulses. These latter, which
have 2 intermediary ellipses, only appear if the sum of the eccentricities of
t he initial and final orbits is greater than 1.T712.
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The utilized impulses are always within one of the acute angles formed by
the tangent and the local horizontal and are always less than 26.29 from the local
horizontal. Of course, these impulses can be fractioned as much as one wishes if
the thruster cannot furnish them at one time., It then effects each fraction at an
interval of one revolution.

When the optimal transfer is not "through infinity" the research of the optimal
impulses and of the intermediate ellipse(s) is in general very complicated, but it
is easy in the following cases: transfers between: aligned coaxial orbits (perigees
on the same side); opposing coaxial orbits (perigees on opposite sides); equal orbits;
orbits of which one is of eccentricity close to zero or one.

It will certainly be of great interest to research the influence of a time
limit and the loss which results therein. This 1s true as much in the cases of
transfers "through infinity" as for those where a weak thruster obliges the use
of thrust arcs.
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